Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment
نویسندگان
چکیده
The Amazon Basin experiences severe droughts that may become more common in the future. Little is known of the effects of such droughts on Amazon forest productivity and carbon allocation. We tested the prediction that severe drought decreases litterfall and wood production but potentially has multiple cancelling effects on belowground production within a 7-year partial throughfall exclusion experiment. We simulated an approximately 35-41% reduction in effective rainfall from 2000 through 2004 in a 1ha plot and compared forest response with a similar control plot. Wood production was the most sensitive component of above-ground net primary productivity (ANPP) to drought, declining by 13% the first year and up to 62% thereafter. Litterfall declined only in the third year of drought, with a maximum difference of 23% below the control plot. Soil CO2 efflux and its 14C signature showed no significant treatment response, suggesting similar amounts and sources of belowground production. ANPP was similar between plots in 2000 and declined to a low of 41% below the control plot during the subsequent treatment years, rebounding to only a 10% difference during the first post-treatment year. Live aboveground carbon declined by 32.5Mgha-1 through the effects of drought on ANPP and tree mortality. Results of this unreplicated, long-term, large-scale ecosystem manipulation experiment demonstrate that multi-year severe drought can substantially reduce Amazon forest carbon stocks.
منابع مشابه
Experimental litterfall manipulation drives large and rapid changes in soil carbon cycling in a wet tropical forest.
Global changes such as variations in plant net primary production are likely to drive shifts in leaf litterfall inputs to forest soils, but the effects of such changes on soil carbon (C) cycling and storage remain largely unknown, especially in C-rich tropical forest ecosystems. We initiated a leaf litterfall manipulation experiment in a tropical rain forest in Costa Rica to test the sensitivit...
متن کاملEffects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest
Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Niño events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climate. Here, we report the final results of a ...
متن کاملEffects of an induced drought on soil carbon dioxide (CO2) efflux and soil CO2 production in an Eastern Amazonian rainforest, Brazil
In the next few decades, climate of the Amazon basin is expected to change, as a result of deforestation and rising temperatures, which may lead to feedback mechanisms in carbon (C) cycling that are presently unknown. Here, we report how a throughfall exclusion (TFE) experiment affected soil carbon dioxide (CO2) production in a deeply weathered sandy Oxisol of Caxiuanã (Eastern Amazon). Over th...
متن کاملEffects of the Interception of Litterfall by the Understory on Carbon Cycling in Eucalyptus Plantations of South China
For the purposes of forest restoration, carbon (C) fixation, and economic improvement, eucalyptus (Eucalyptus urophylla) has been widely planted in South China. The understory of eucalyptus plantations is often occupied by a dense community of the fern Dicranopteris dichotoma, which intercepts tree canopy leaf litter before it reaches the ground. To understand the effects of this interception o...
متن کاملEffects of Understory Liana Trachelospermum jasminoides on Distributions of Litterfall and Soil Organic Carbon in an Oak Forest in Central China
Liana constitutes an important structural and functional component in many forest ecosystems and has profound impacts on forest carbon (C) cycling. However, whether and how liana regulates spatial distributions of litterfall and soil organic C are still poorly understood. To address this critical knowledge gap, we investigated litterfall composition and soil physicochemical characteristics in s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Philosophical Transactions of the Royal Society B: Biological Sciences
دوره 363 شماره
صفحات -
تاریخ انتشار 2008